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Abstract

This paper addresses issues of co-evolution of
form and function for autonomous vehicles,
specifically evolving morphology and control for
an autonomous micro air vehicle (MAV).  The
evolution of an optimal minimum sensor suite
and reactive strategies for navigation and
collision avoidance for the simulated MAV is
described.  The details of the implementation of
the simulated aircraft, the environment, and the
two cooperating genetic algorithm-based
systems, SAMUEL and Genesis, used for
evolution, are presented, as are preliminary
results.

1 INTRODUCTION
The co-evolution of form and function is the way all
living organisms evolved in nature. If nature’s example is
to be followed, the form and function of autonomous
agents should be co-evolved in a similar manner.

In this study, the concept of the co-evolution of form and
function is applied to the Micro Air Vehicles (MAVs)
domain.  MAV should be thought of as an aerial
autonomous agent, a six-degree-of-freedom vehicle
whose mobility allows us to deploy a useful micro
payload to a remote or otherwise hazardous location
where it may perform variety of missions, including
reconnaissance and surveillance, targeting, tagging, and
bio-chemical sensing.  The design of MAVs calls for
aircraft that is at least an order of magnitude smaller than
any current flying system; the target vehicle whose model
is used for this study, has a wingspan of 6 inches (15 cm).
Due to the size of the aircraft as well as the variety of
applications, the design of the sensory payload and the
controller of the MAV are quite complex, as are the
relationships between them.  The design issue addressed
explicitly in this study is minimization of weight and
power requirements.  The goal of the study is to evolve a
sensor suite with a minimal number of sensors, which
allows for the most efficient task-specific control.  The

experimental task requires MAV to navigate to a specified
target location, while avoiding collision with obstacles.
The co-evolution is performed in simulation using two
cooperating genetic algorithm-based systems, SAMUEL
[Grefenstette 91] and GENESIS [Grefenstette 84].

The remainder of this paper oulines the work done up to
this date, and then goes into details about our
implementation of co-evolution of the behaviors required
for collision-free navigation and the characteristics of a
sensor suite that would allow the MAV to perform its task
with a maximum efficiency.  The simulated environment,
aircraft, and sensors are described and the details of the
two learning systems are provided as well.  Finally, some
initial results are presented, and the future direction of the
research is outlined.

2 RELATED WORK
Evolutionary algorithms have been shown to be effective
procedures for searching large and complex spaces.  They
have been successfully applied to automate the design of
robots’ morphology as well as the design of the
controllers, but the concept of co-evolution of form and
function has surfaced only recently.

There has been a great deal of work done in the area of
evolution of function for autonomous robots. [Nolfi 94]
evolves neural controllers for collision-free navigation for
mobile robots.  [Harvey 92] reports on evolving neural
control systems for the task of exploration. [Schultz 91]
used a genetic algorithm-based system, SAMUEL, to
learn reactive rule-based strategies for collision-free
navigation for an autonomous underwater vehicle (AUV)
as well as shepherding [Schultz 96] and tracking for other
mobile robots.  [Sammut 92] demonstrates machine
learning of a reactive strategy to control a dynamic
system by observing a controller that is already skilled in
the task. While [Floreano 96] discusses similar work, the
evolutionary process in this study is carried entirely
online on the physical robot.

In parallel to research of techniques of evolution of
function, similar research is being done in the area of
evolution of form.  [Funes 97] applied evolutionary
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techniques to the design of structures assembled out of
parts.  [Husbands 96] uses a distributed genetic algorithm
and a distributed genetic algorithm hybridized with
gradient decent techniques to evolve the cross-section of
optimal aircraft wing-boxes. [Lichtensteiger 99] presents
a study of evolution of the morphology of the compound
eye.  In [Lund 97] evolution of a morphology of an
auditory hardware is discussed. [Mark 98] presents a
framework for the study of sensor evolution in a
continuous 2-dimensional virtual world (XRaptor).

Finally, in recent years work has began on co-evolving
form and function for autonomous agents.  [Sims 94]
presents a system for the co-evolution of morphology and
behavior of virtual creatures that compete in physically
simulated three-dimensional world.  In [Lee 96] a hybrid
genetic programming/genetic algorithm approach is
presented that allows for evolution of both controllers and
robot bodies to achieve behavior-specified tasks. [Lund
98] introduces a LEGO simulator that allows the user to
co-evolve controllers and body plans using interactive
genetic algorithm in simulation before constructing the
LEGO robots.  [Balakrishnan 96] presents the
comparative study of evolution of a control system given
fixed sensor architecture, and co-evolution of sensor
characteristics (placement and range) and the control
architecture for the task of box pushing.

The work presented here is related to these projects, but
differs in several aspects.  The result of this study is a
learning system consisting of two cooperating genetic
algorithm-based systems that allows for co-evolving
control behaviors and the sensor suite for the MAV whose
task is to navigate to a specified target location while
avoiding obstacles.  While the majority of the previous
work involved evolution of neural controllers, our
approach implements evolution of stimuli-response rules.
The sensors characteristics initially evolved include the
number of sensors and their beam width, with the future
possibility of evolution of range and explicit placement of
each sensor.  Also, even though the evolution is
performed in simulation, the simulator closely models the
real aircraft and its environment.  Finally, the control
behaviors are not evolved in a specific setup of an
environment as in [Balakrishnan 96], [Lund 98], and [Lee
96], but rather each single trial is performed in a
randomly and dynamically created environment.

3 EVOLUTION OF SENSOR DESIGN
AND CONTROL FOR MAV

The objective of the study is to evolve a sensor suite with
a minimal number of sensors, which allows for the most
efficient task-specific control.  This section gives an
overview of the learning system used to co-evolve the
sensor characteristics and the control of the MAV whose
task is a collision-free navigation to a specified target
location.

The learning system used for co-evolution of form and
function in this study is composed of two cooperating
genetic algorithm-based systems, SAMUEL and

GENESIS.  SAMUEL evolves the stimuli-response rules
to control the MAV, while GENESIS is used to evolve
characteristics of the sensors for the aircraft, for example:
sensor range, area coverage, and placement.

Figure 1:  Cooperating genetic algorithm-based systems.

The two systems create a loop (see Figure 1) in which the
output from one learning system is the input to the other
one.  Each member of population being evaluated by
GENESIS represents a specific sensor configuration,
which has to be evaluated by SAMUEL.  Since it is
assumed that the weight and power requirements can be
fulfilled just by decreasing number of sensors on board of
the MAV, the GENESIS evaluates each member of the
population based on the number of the sensors in the suite
and its task performance in the simulated environment as
defined by the performance value returned by SAMUEL.
This process is repeated until the minimum number of
sensors is found that ensures the maximum efficiency of
control given that sensor suite for the specified task or
until maximum number of generations is reached.

The following sections will discuss the details of the
evolution of both form (Section 5.0) and function (Section
4.0).  The goals of each learning task will be reviewed,
followed by implementation details and the short
description of both learning systems, the representations
and the fitness functions used.

4 EVOLUTION OF FUNCTION
In this section, the details of the MAV’s control task and
its process of evolution are discussed.  Experimental
details of the simulated environment, aircraft, and sensors
are provided along with the details of the learning system
used.

4.1 PROBLEM DESCRIPTION

The MAV must be able to efficiently and safely navigate
in 3-Dspace among obstacles (trees) to a target location.
The desired behavior should maximize the number of
times the MAV reaches the target location while
minimizing the distance traveled to that location.  This
problem includes several features that make it a
challenging machine learning problem, e.g.: a weak



domain knowledge (e.g. no predictive model of obstacles
or the goal), incomplete state information provided by
discrete (possibly noisy) sensors, a large state space, and,
of course, delayed payoff.  The generality of evolved
control is ensured due to a random setup of the
environment and the MAV’s position in it for every
evaluation.

4.2 PROBLEM REPRESENTATION

4.2.1 Environment

Since the learning is being done in simulation, the MAV
and its environment have to be modeled.  To model the
world as well as the aircraft itself, a high-fidelity, 3-D
flight simulator is used, which includes an accurate
prametrized model of a 6-inch MAV. The low level
control for the MAV was implemented using a number of
PID controllers in such a way that the plane could be
controlled through changes made to turn rate and altitude
of the aircraft.  The trees (obstacles) were modeled as
spheres (treetops) on top of cylinders (trunks).  Any
contact between the plane and the tree constituted a
collision.  The density of trees was user-defined as a
number of trees per square foot assuming uniform
distribution.  At the beginning of each simulated flight,
the MAV was placed in a random location within a
specified area away from the target.  The target remained
stationary thorough out the flight.

4.2.2 Sensors

There is a wide variety of sensors that could be
implemented on the MAV, but the final make up of the
sensor suite is constrained by the size, weight, and power
capacity of the vehicle.  It is assumed that the MAV has a
sensor, which returns the relative range and bearing  to
the target.  Also, the aircraft is equipped with a number of
range sensors similar in capability to radar or sonar.  Each
sensor is capable of detecting obstacles and returning the
range of the closest object within the sector covered by
that sensor.  The exact makeup of these sensors is learned
by the evolution of form as described in Section 5.0.

4.2.3 Actions/Effectors

There is a discrete set of actions available to control the
MAV.  In this study, the only action that is considered
specifies discrete turning rates for the MAV.  The control
variable turn_rate is between –20 and 20 degrees in 5
degrees increments.  The altitude of the plane is held
constant by the underlaying PID controllers.

4.3 IMPLEMENTATION OF EVOLUTION

4.3.1 The Learning System

The behaviors required for navigating MAV to the target
location while avoiding obstacles, which are represented
as a collection of stimulus-response rules, are learned in
the SAMUEL rule learning system. SAMUEL is a
machine learning program that uses standard genetic

algorithms and other competition-based heuristics to solve
sequential decision problems.  It features Lamarckian
operators (specialization, generalization, merging,
avoidance, and deletion) that modify decision rules on the
basis of observed interaction with the task environment.
The original system implementation is described in
greater detail in [Grefenstette 91].

4.3.2 Representation

SAMUEL implements behaviors as a collection of
stimulus-response rules.  Each stimulus-response rule
consists of conditions that match against the current
sensors of the autonomous vehicle, and an action that
suggests action to be performed by it.  An example of a
rule (gene) might be:

RULE 122
IF  bearing = [-20, 20] AND sonar4 < 45
THEN SET turn_rate = -100

Each rule has an associated strength with it as well as
number of other statistics.  During each decision cycle, all
the rules that match the current state are identified.
Conflicts are resolved in favor of rules with higher
strength.  Rule strengths are updated based on rewards
received after each training episode.

4.3.3 Fitness Function

The simulation is divided into episodes that begin with
placement of the MAV at a random distance (between
500 and 750 units) away from the target facing in random
direction, which is followed, by a random placement of
trees in the environment.   The episodes end with either a
successful arrival of the MAV at the target location, a loss
of the MAV due to energy running out, or a loss of the
MAV due to collision with an obstacle (tree or ground).
The arrival is successful if the MAV approaches  the
target location within 15 units. The payoff for this study is
defined as:

(Eqn. 1)

5 EVOLUTION OF FORM
In this section, the details of the MAV’s sensor suite
configuration and its process of evolution are discussed.

5.1 PROBLEM DESCRIPTION

Due to the size of the MAV and the variety of
applications, the design of the sensory payload for MAVs
involves many tradeoffs.  The design issue addressed in
this study is the minimization of weight and power
requirements.  The objective of this study is to evolve a
sensor suite with a minimal number of sensors that
guarantees an efficient task-specific control.  The sensor
design is being evolved along with the decisions rules that
control the actions of the MAV.

payoff =

−
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5.2 PROBLEM REPRESENTATION

Given a task of evolving the characteristics of a sensor
suite, the sensor model in Figure 2 was assumed.

Figure 2:  Sensor Model.

The sensor is similar in capability to a radar or sonar i.e. it
returns the range to the closest obstacle in its field of
view.  The evolvable sensor characteristics include:

1. number of sensors
2. minimum range of the individual sensor
3. maximum range of the individual sensor
4. beam width of the individual sensor
5. placement of individual sensor

Given these characteristics, there are two types of the
suites that can be designed: homogeneous and
heterogeneous (see Figure 3).

Figure 3:  Homogeneous (left) and
Heterogeneous(right) Sensor Suite Designs.

A homogenous sensor suite contains the sensors that have
the same exact individual characteristics (max and min
range, beam width); hence the only characteristics of such
a sensor suite that can be varied are the number of
sensors, and the placement of individual sensors. A
heterogeneous sensor suite contains sensors that differ in
the individual characteristics.

In this initial study, only the number of sensors and
individual sensor‘s beam width of a homogeneous sensor
suite are being evolved.  The placement of the sensor is
assumed to be symmetrical along the direction of flight as
shown in Figure 3 (left) with the maximum sensor range
of 200.0 units.

5.2 IMPLEMENTATION OF EVOLUTION

5.2.1 The Learning System

The sensor suite characteristics of the sensory payload for
the MAV are evolved using GENESIS, a standard GA
which maintains a "population" of candidate solutions to
the objective function f(x):

P(t) = <x1(t), x2(t), ... , xN(t)>

where xi represents a vector of parameter to the function
f(x) whose value is to be minimized.  For each generation,
the current population is evaluated using user-defined

fitness/evaluation function, and, on the basis of that
evaluation, a new population of candidate solutions is
formed using standard GA operations.  More details about
GENESIS can be found in [Grefenstette 84].

5.2.2 Representation

For this study, GENESIS’ floating-point representation
was used.  Each chromosome described the make up of a
possible sensor suite.  The characteristics used to describe
a sensor suite included the number of sensor in a suite
(1–32), and the sensor area coverage (5-30 degrees) of the
individual sensor in that suite.

5.2.3 Fitness Function

In order to fulfill the objectives of this study, each design
of a sensor suite has to be evaluated based on the number
of sensors in the suite and on its performance of the task.
The fitness function returns a value that is to be
minimized by GENESIS (see Eqn. 2).

payoff c num_of_sensors c MAV_performance1 2= +[ ]∑ ( * ) ( * ( . / )1 0    (Eqn. 2)

where c1 and c2 are constants used to weight the
influence of the parameters, number of sensors in the suite
and the MAV performance, on the sensor suite
configuration being evolved.  The MAV performance of
the task is the measure of the performance of the best
decision ruleset learned by SAMUEL using the sensor
suite being evaluated by GENESIS.  This forces
SAMUEL to perform a whole learning experiment (60
generations) for every member of the population
evaluated by GENESIS.

6 PRELIMINARY RESULTS
Figure 4 shows the learning curves for different designs
of sensor suites where each sensor suite is defined by the
number of sensor in a suite and the beam width of
individual sensor. The plot shows the average
performance (over 100 trials) of the best-so-far individual
in the current population.

Figure 4:  Learning curve for different sensor suite
configurations.



There is a significant difference in performance of the
task by the MAV depending on the sensor suite
implemented.  The sensor suites with narrower beam
width of the individual sensors allow the plane to
determine the position of the obstacles more precisely so
the plane is able to perform its task more efficiently.
Furthermore, the increase in the number of physical
sensors in the suite doesn’t guarantee the change in task
performance.  Since the sensor suites are evaluated based
only on the number of the sensors in the suite and the task
performance, the suites with useless sensors should be
eliminated first, allowing the system to focus on
determining the best individual sensor’s area coverage for
the task.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an concept of co-
evolution of form and function for the autonomous
agents.  The study of co-evolution of the sensor suite and
the reactive control system for a micro air vehicle whose
task is collision-free navigation, is currently in progress.
Due to the complexity of the learning performed, only the
preliminary results were available at the time of this
publications, but even theses make us belive that the goal
of finding the sensor suite with minimal number of
sensors that guarantees an efficient performance of the
task, is attainable.

Future work will include performing studies of more
complex sensor suite designs including heterogeneous
sensor suites in which range, beam width, and placement
of the individual sensors are evolved.  Such studies would
require revising the evolutionary system to allow for
variable length genomes on the GENESIS side.
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